Teaching Demonstration

Using the principles of Conservation of Angular Momentum, describe the motion of a rigid body for a calculus-based physics course.

1. Objective:

To clearly explain the physical concept of angular momentum conservation and apply it to the motion of a rigid body, using calculus-based reasoning suitable for undergraduate students.

2. Define Angular Momentum (L):

$$ec{L} = ec{r} imes ec{p} \quad ext{or for a rigid body}, \quad ec{L} = I ec{\omega}$$

where I is the moment of inertia and ω is angular velocity.

3. State the Law of Conservation:

If no external torque acts on a system, the total angular momentum remains constant:

$$rac{dec{L}}{dt}=ec{ au}_{
m ext}=0\Rightarrowec{L}={
m constant}$$

4. Explain with a Physical Example:

- A spinning ice skater pulling arms in to spin faster.
- A rotating platform with a person moving weights inward/outward.
 Use equations:

$$I_1\omega_1=I_2\omega_2$$

5. Include Calculus-based Reasoning:

Where does this law come from?

• The Conservation of Angular Momentum is a direct consequence of Newton's Second Law for Rotation:

$$ec{ au}=rac{dec{L}}{dt}$$

When the **net external torque** $\vec{\tau}_{\rm ext} = 0$, it implies:

$$rac{dec{L}}{dt}=0 \Rightarrow ec{L}={
m constant}$$

 More fundamentally, from a theoretical physics perspective, conservation of angular momentum is rooted in **rotational symmetry of space** (Noether's Theorem):

If the laws of physics do not change under rotation, angular momentum is conserved.

6. Optional Visual Aid or Simulation:

Use a basic diagram or reference to visualize the concept.

https://www.new3jcn.com/Phyc240/angular-momentum-law.html

7. Engagement Prompt:

Question: "What happens to angular velocity if the moment of inertia decreases? Why?"